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The relay node placement problem in wireless sensor network (WSN) aims at deploying the minimum number of relay nodes over
the network so that each sensor can communicate with at least one relay node. When the deployed relay nodes are homogeneous
and their communication ranges are circular, one way to solve the WSN relay node placement problem is to solve the minimum
geometric disk cover (MGDC) problem first and place the relay nodes at the centers of the covering disks and then, if necessary,
deploy additional relay nodes to meet the connection requirement of relay nodes. It is known that the MGDC problem is NP-
complete. A novel linear time approximation algorithm for the MGDC problem is proposed, which identifies covering disks using
the regular hexagon tessellation of the plane with bounded area. The approximation ratio of the proposed algorithm is (5+¢), where
0 < € < 15. Experimental results show that the worst case is rare, and on average the proposed algorithm uses less than 1.7 times
the optimal disks of the MGDC problem. In cases where quick deployment is necessary, this study provides a fast 7-approximation

algorithm which uses on average less than twice the optimal number of relay nodes in the simulation.

1. Introduction

Given a set P of n points on the Euclidean plane and a
prescribed radius r, disk d covers a point p € P if the
distance between the center of d and p is not greater than
r. The minimum geometric disk cover (MGDC) problem is
to identify a set of disks with minimal cardinality covering
all points in P. If radius r equals 1, the MGDC problem is
called the minimum geometric unit disk cover (MGUDC)
problem. To simplify calculations, this study focuses on solv-
ing the MGUDC problem. However, all MGUDC problem
algorithms can easily be extended to the MGDC problem
by changing the radius from 1 to any fixed real number r.
Solutions to the MGDC problem can be used to solve the
relay node placement problems in wireless sensor networks
(WSNs).

A WSN consists of spatially distributed autonomous
sensors that cooperatively monitor a region for physical

or environmental conditions, such as temperature, sound,
vibration, pressure, motion, and pollution. The transmission
power consumed by a wireless radio is proportional to the
distance squared or even higher in the presence of obstacles.
Thus, multihop routing (instead of direct communication) is
usually used for sending collected data to the sink.

A method of prolonging the lifetime of a WSN and
preserving network connectivity is to deploy a few costly,
but powerful, relay nodes to communicate with the other
sensors or relay nodes. The WSN relay node placement
problem studies how to deploy the fewest relay nodes so
that each sensor can communicate with at least one relay
node. In this study, we assume that the relay nodes in the
WSN are homogeneous and their communication ranges are
circles with radius r. (If the communication range is irregular,
the  can be taken as the minimum radius among the
inscribed circles of the irregular ranges.) Therefore, the relay
node placement problem of WSNs can be treated as solving
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FIGURE 1: Three unit polygon (triangle, square, and hexagon) tessellations.

the MGDC problem and then placing the relay nodes at the
centers of the chosen disks. In case the resulting relay nodes
are not connected, additional relay nodes can be deployed
to comply with the connection requirement among the relay
nodes.

This study proposes two simple and effective approx-
imation algorithms for the MGDC problem that identify
covering disks using the regular hexagon tessellation of the
plane. Tessellation is the process of creating a 2D plane by
repeating a geometric shape with no overlaps or gaps. A
regular tessellation is a tessellation that covers a 2D plane
with regular polygons of the same shape and size. Only three
regular tessellations (composed of the hexagon, square, and
triangle) exist in the Euclidean plane [1].

A regular polygon enclosed by a unit disk (i.e., a circle
with a radius of 1) is a unit polygon. If the polygons in a
regular tessellation are all unit polygons, it is called a unit
polygon tessellation. The three unit polygon tessellations are
as follows: a unit triangle tessellation, unit square tessellation,
and unit hexagon tessellation (Figure 1). Let us check how
many unit polygons are needed to tessellate a given plane.

Suppose the area of the plane to be covered is F and
the radius of the circumscribed circle of each regular poly-
gon is r; in order to cover the entire plane with regular
tessellation, it needs at least [4F/3+/377] triangles, [F/2r*]
squares, or [2F/3 \3r2] regular hexagons (because the areas
of each triangle, square, and hexagon are (3 \3 / 4)r2, 2¢%, and
(3v/3/2)r%, resp.). For example, suppose F = 200 x 200
and r = 10; then in order to cover the area with regular
tessellation, we need at least 308 triangles, 200 squares, or
154 regular hexagons. In general, if F is sufficiently large, then
[4F/3/3r*] > [F/2r*] > [2F/3/3r*]. Therefore, we can use
fewer hexagons than squares and triangles to cover the same
area with the same circumscribed radius.

This paper is organized as follows: Section 2 provides
the related research on the MGDC and WSN relay node
placement problems. Section 3 presents the approximation
algorithms and their analysis to the MGDC problem using
hexagon tessellation. Section 4 provides the simulation
results of the proposed approximation algorithms and its

application to the relay node placement problems in WSNG.
Section 5 presents the conclusion.

2. Related Research

Given a set P of n points on the Euclidean plane, the MGDC
problem is to identify the smallest set of congruent disks with
radius 7 that covers all points in P. The MGDC problem has
been shown to be NP-complete [2-4]. Hochbaum and Maass
[2] developed a polynomial time approximation scheme
(PTAS) for the MGDC problem. They used a divide-and-
conquer approach to solve the MGDC problem and proposed
the shifting lemma to calculate the approximation ratio.
They obtained a family of algorithms with a worst-case
approximation ratio of 1 + € (with 0 < € < 3) and a running
time O(rfg2+1 ), where n is the number of pointsand ! (I > 1) is
the shifting parameter. The time complexity becomes large as
€ approaches zero, making this approach impractical for even
a few input points.

Other polynomial approximation algorithms have been
proposed, each of which provides suboptimal solutions
within a constant approximation factor of the optimal solu-
tion [5-7]. These algorithms are based on the observation
that the number of possible disk positions can be limited
by assuming (without loss of generality) that any disk that
covers at least two points has two of these points on its border.
An exhaustive search of all possible disk positions leads to
an optimal solution but requires an amount of time that is
exponential in the number of points covered. By searching a
subset of all possible disk positions, the running time of an
algorithm becomes a polynomial of the number of points to
cover, and the solution is guaranteed to be within a constant
factor of the optimal one.

Franceschetti et al. [5, 8] used a different approach to
approximate the MGDC problem. They solved the MGDC
problem by locating the covering disks at the centers of a set of
tessellated squares. Consider a square gird G. They examined
how many disks with given radius r, centered at the vertices
of G, were required to completely cover an arbitrary disk of
radius 7 placed on the plane. They showed that this number
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is an integer in the set {3, 4, 5, 6}, the value of which depends
on the ratio of r to the grid spacing. If the disks are congruent
unit disks (i.e., # = 1) that circumscribe the squares of grid
G, six disks are required to cover an arbitrary disk of radius r
in the worst case. In cooperation with shifting strategy, their
approximation algorithm can solve the MGDC problem with
no more than 6 + € times the optimal number of disks, where
0<ex<18.

In [9], Fu et al. developed an O(n(log n)z(log log n)%)
deterministic time 2.8334-approximation algorithm for the
MGDC problem. The authors used the concept of Borsuk
number and developed some novel method to cover the
points in the local region, which is roughly occupied by one
disk. Instead of covering points with two fixed-size disks, they
let two local regions share one disk in some cases. Although
the approximation ratio of the algorithm in [9] is smaller
than that of our proposed algorithms, their time complexity
is higher than ours.

There are some interesting problems related to the MGDC
problem studied in the literature, such as the discrete unit disk
cover (DUDC) problem. Given a set P of n points and a set D
of m unit disks on a 2-dimensional plane, the DUDC problem
is (i) to check whether each point in P is covered by at least
one disk in D and (ii) if so, then find a minimum cardinality
subset D* € D such that unit disks in D* cover all the points
in P. In [10], the authors provide an algorithm with constant
approximation factor 18. The running time of the proposed
algorithm is O(nlogn + mlogm + mn).

Lloyd and Xue [11] studied two versions of relay node
placement problems. In the first version, they used a minimal
number of relay nodes to create a connecting path between
each pair of sensor nodes consisting of relay and sensor
nodes. In the second version, they used a minimal number
of relay nodes to create a connecting path between each
pair of sensor nodes consisting only of relay nodes. They
presented a polynomial time 7-approximation algorithm for
the first problem and a polynomial time (5+¢)-approximation
algorithm for the second problem, where ¢ > 0 and can
be any given constant. They claimed the complexity of their
algorithms is bounded by O(nlogn) plus the complexity of
any efficient approximation algorithms for the minimum
Steiner Tree Problem.

Tang et al. [12] studied the relay node placement problem
in large-scale WSNs. They placed the fewest relay nodes in
a sensor network playing field so that (1) each sensor node
could communicate with at least one relay node and (2) the
relay node network was connected. They treated relay node
placement in WSNs as a variation of the MGDC problem.
They developed two polynomial time approximation algo-
rithms to solve the problem and proved that the ratio of relay
nodes required by the approximation algorithm to the relay
nodes required by the optimal algorithm is bounded by 8
for the first algorithm and 4.5 for the second. However, both
algorithms have very high time complexities.

In [13], the authors proposed algorithms for the relay
node placement problem in two-tiered WSNs with base sta-
tions, which aim to deploy a minimum number of relay nodes
to achieve certain coverage and connectivity requirement.
Under the assumption that the communication range of

the relay node is the same as sensor nodes, the authors present

a (5 + €)-approximation algorithm for the single cover single

2
connectivity problem with time complexity of O(n'/¢" + n*).

In their paper, they also presented a (20 + €)-approximation
algorithm for the 2-cover 2-connectivity problem.

The authors in [14] studied the relay node placement
problems of WSNs in a set of candidate locations with high
energy harvesting potential. They proposed an algorithm that
first builds an edge weighted hybrid communication graph
(HCQ) from the given network and then applies the existing
algorithm for the Steiner Tree Problem (STP) to obtain the
solution. They obtained a 12.4-approximation algorithm for
the general case with a certain number of base stations
and 10.85-approximation algorithm for the case without base
stations. The complexity of their main algorithm is O((n +
m + I)* + T(A)), where n is the number of sensor nodes,
m is the number of base stations, / is the number of the
candidate locations, and T'(A) is the time complexity of the
approximation algorithm for STP.

Recent researches in [15-17] focused on the relay node
placement problems in WSNs with extra constraints. In [15],
the authors focused on fault tolerant relay node placement
in two-tiered heterogeneous WSN with base stations. They
proposed an (18 + €)-approximation algorithm for the relay
node placement problem that ensures every sensor node
is able to communicate with at least two relay nodes and
the induced relay node network is 2-connected. In [16],
the authors focused on solving the relay node placement
problem with the constraint of minimizing the overall com-
munication cost. They proposed O(n*) algorithm based on
spiral sequence generated for arbitrarily deployed sensor
nodes. From their simulation results, the number of deployed
relay nodes is very close to the optimal value. In [17], the
authors proposed a relay node placement algorithm that the
relay nodes are deployed in the center of grids that cover
the monitor region and these grids are divided recursively
depending on a precalculated threshold value of depth.

In this study, we propose two efficient algorithms for the
relay node placement problems with low complexity. Our
main result is a linear time (5 + €)-approximation algorithm
for the MGDC problem which can be applied directly to
the single cover single connectivity relay node placement
problem. For the connection requirement of relay nodes, the
paper presents a simple method that first finds the connected
components of the relay nodes and then, if necessary, places
additional relay nodes among the components to make them
connected. This simple method can be done in O(m?) time,
where m is the number of deployed relay nodes generated
by the MGDC algorithm. Note that the sensors in WSNs are
usually densely deployed; thus the number of relay nodes is
far smaller than that of sensor nodes in the networks.

3. Approximation Algorithms for the MGDC
Problems with Hexagon Tessellation

To cover a sufficiently large area of a plane, a unit hexagon
tessellation requires fewer polygons than a unit square tessel-
lation. Using square tessellation to solve the MGDC problem
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FIGURE 2: (a) The center of the unit disk is located at point O. (b) The center of the unit disk is located at the area of OBX. (c) The center of
the unit disk is located in the area of OXY (red region). (d) The center of the unit disk is located at point Y.

has been studied in [8]. As far as we know, no studies on
using hexagon tessellation to solve the MGDC problem have
been published. This section presents such an approach and
proposes an approximation algorithm which uses both the
hexagon grid strategy and the shifting strategy.

3.1. Hexagon Grid Strategy. In [8], the authors showed that it
is sufficient to cover an arbitrary unit disk in the plane by six
grid unit disks in the worst case. This result can be improved
if we use unit hexagon instead of unit grid. In this section, we
show that it is sufficient to cover any unit disk in the plane by
five circumscribed disks of tessellated unit hexagons.

Theorem 1. A circle circumscribing a unit hexagon is called a
hexagon disk. Five hexagon disks are sufficient to cover any unit
disk D on a plane.

Proof. Without loss of generality, assume that the center of
unit disk D is located in a regular hexagon (e.g., A2 in
Figure 2) surrounded by six neighboring regular hexagons.
Because a regular hexagon can be divided into six congruent
equilateral triangles, different cases were analyzed using one
of the triangles (e.g., AOXY in Figure 2(a)). The analysis for
the remaining triangles is the same.

Let C be the center of unit disk D. The following cases are
discussed according to the location of C.
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Case 1 (C is located at point O (Figure 2(a))). The circum-
scribed circle of hexagon A2 completely covers unit disk D.

Case 2 (C is located in area OBX (or OCY) (Figure 2(b))).
Arc OBX is derived from the unit circle centered at the
intersection point of Al, A2, and A4. Arc OCY is derived from
the unit circle centered at the intersection point of A2, A3,
and A6. Five circumscribed circles of hexagons Al, A2, A4,
A5, and A6 (or A2, A3, A4, A5, and A6 if the disk center is in
OCY) completely cover unit disk D.

Case 3 (C is located in area OXY (the red region in
Figure 2(c))). Four circumscribed circles of hexagons A2, A4,
A5, and A6 completely cover unit disk D.

Case 4 (the center of unit disk D is located at point Y (or X)
(Figure 2(d))). Three circumscribed circles of hexagons A2,
A5, and A6 (or A2, A4, and A5) completely cover unit disk
D.

It is trivial to see that Cases 1 to 4 include the whole area
of triangle OXY. Because the most circumscribed circles (i.e.,
Case 2) required to cover unit disk D are five, we conclude
that it is sufficient to cover any unit disk on the plane with
five hexagon disks. O

Similar proof techniques can be applied to the other two
regular tessellations (square and triangle). The proofs for the
following theorems can be found in the Appendix. Similar
to the definition in Theorem 1, a circle circumscribing a unit
square is called a square disk and a circle circumscribing a
unit triangle is called a triangle disk. Theorem 2 is due to a
special case of Theorem 1in [5].

Theorem 2. Given a square tessellation, six square disks are
sufficient to cover any unit disk D on a plane.

Theorem 3. Given a triangle tessellation, ten triangle disks are
sufficient to cover any unit disk D on a plane.

3.2. The shifting Strategy. The shifting strategy is a divide-
and-conquer technique used to confine the error by applying
it repetitively, choosing the single most favorable solution. Let
P be a set of n given points on the plane enclosed in an area
R. The goal is to cover these points with a minimum number
of disks of prescribed radius r.

Suppose we have a local algorithm A for the given
problem. The shifting algorithm S(A) works as follows. We
first divide the plane into vertical strips of width D > 2r.
Let the shifting parameter be [. Consider the groups of |
consecutive strips. Each group is itself a thicker strip of width
I x D. Let A be an algorithm that can deliver a solution
within each group. We can find a feasible solution by applying
algorithm A to each of the groups and then considering the
union of all disks used. We then repeat the same strategy after
shifting all the groups by the length D. Since each group is a
strip I x D wide, we can repeat the shift a total of I — 1 times
and then select the feasible solution of minimum cardinality
as the final best covering.

Let Z , be the value of the solution delivered by algorithm
A. OPT denotes an optimal solution set and its size is |OPT|.

Let r, be the performance ratio of the algorithm A. r, is
defined as the supremum of the ratio Z,/|OPT|, over all
problem instances. The following lemma is proven in [2].

Lemma 4 (the shifting lemma [2]). Consider

1
s <ra(1+7): M

We can apply the shifting strategy twice on the plane. We
first cut the plane into vertical strips of width I x D. Then,
in order to cover the points in each such strip, we apply the
shifting strategy in the other dimension. Thus, we cut the
considered strip into regions of side length [ x D. Let B be the
local algorithm that delivers a solution in each square region.
By applying the shifting lemma twice, we have

1 2
rS(B)SrB<1+7> . (2)

3.3. The Proposed Approximation Algorithm. In this sub-
section, we present a linear time approximation algorithm
(Algorithm 1) for the MGDC problem based on the hexagon
grid strategy and the shifting strategy. The width of vertical
strip D, is set to 3r and the height of horizontal strip D, is set
to 2/3r. Figure 3 shows an area divided by the square-like
regions with size D, x D,.

Analysis of Algorithm Hexagon-I. The major step of the algo-
rithm is Step 11, which is responsible for checking whether
the current k hexagon disks can cover all of the points in the
square-like region Q in question. Step 11 can be done in O(n)
steps by the following substeps.

Step 11(a). Identify the set of points S € P which are located
in region Q.

Step 11(b). Check whether each point u in § is located in at
least one hexagon disk of the k hexagon disks by calculating
the distances between u and the centers of the k hexagon
disks.

Step 11(a) takes O(n) steps to check each point in P. Step
11(b) takes O(|S| x k) steps. Since |S| is bounded by n, Step
11(b) also takes O(n) steps. Therefore, Step 11 takes O(n) steps
in total.

Now, let us compute the frequency of execution of Step
11 in the algorithm. In Step 11, all the combinations of the
k hexagon disks are needed to be examined in the worst
case, where k is from 0 to 4/*. Thus, the total number of
examinations is C(41%,0) + C(4l%,1) + --- + C(4l%,41*) =
2% Let the area of region R be M. Because the area of
each hexagon is 3+/3r%/2, there are [M/(41* x 3/3r%/2)] =
[M/6~/3r%1%] square-like regions in R. Therefore, Step 11
needs to be performed [M/6 V32 x 2% times in the worst
case for a shift. Since there are (I — 1)2 shifts in the algorithm,
the number of examinations in Step 11, in the worst case, is

[M/6~/3r*1*] x 24 (I - 1)%, which is less than [ M /6~/3r%] x
2%, Thus, the complexity of this algorithm is O(K#n), where
K < [M/6+/3r*] x 2" If the area R is fixed, M is a constant.
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Algorithm Hexagon-I
Input: A set P of n points, and a two-dimensional region R.
Output: A set of disks with radius r that covers P.

1 is the shifting parameter (a positive integer).

(3)Fori=0tol—-1do{
(4) Set the starting position of vertical strips at i x D,
(5) For j=0tol—-1do{

(17) Output Min-Set

(1) Let the width of the vertical strips be I x D, and the height of the horizontal strips be [ x D,, where D, = 3r, D, = 24/3r, and

(2) Min-Cardinality = +0c0; Min-Set = {} // Min-Set contains the minimum number
/1 of hexagon disks that cover P found so far

(6) Set the starting position of horizontal strips at j x D,

7) Let H = {} // H contains the chosen hexagon disks that cover points in P
(8) For each (I- D, x - D,) square-like region Q in R do

9) Fork=0to4x1>do{ //0isfor the case of no points in Q

(10) For each combination of k hexagon disks in Q do

11) Check whether the k hexagon disks cover all the points in Q
(12) If yes then add the k hexagon disks to H and break the k-loop
(13) }

(14) If |H| < Min-Cardinality then { Min-Set = H; Min-Cardinality = |H|}
asy }

(16) }

ALGORITHM l: The proposed approximation algorithm for the MGDC problem.

2,1 4,1

FIGURE 3: Square-like regions obtained by the vertical strips (divided
by red lines) and the horizontal strips (divided by green lines).

Since both r and [ are constants, K is a constant when the area
Ris fixed. Thus, the algorithm Hexagon-I in Figure 2 is linear,
if the area of sensing region is fixed. (Note. If we assume that
the region R is a bounded area, the input “a 2-dimensional
region R” in algorithm Hexagon-I should be removed and
make a claim that the region R is a 2-dimensional bounded
area in the body of the algorithm.)

Theorem 5. There is a linear time approximation algorithm
such that, for every given natural number [ > 1, the algorithm
delivers a cover of the n given points by disks of prescribed radius
r in O(Kn) steps with approximation factor < 5(1+1/1)%, where
K is a constant when the area of sensing region is fixed.

Proof. Algorithm 1 is such a linear time algorithm that
delivers a cover for the n given points in an area. The
approximation ratio < 5(1 + 1/1)* is directly from Theorem 1
and the shifting lemma, and K is a constant bounded by

[M/6+/3r*] x 2% from the above analysis. O

By Theorem 1 and Lemma 4, the performance ratio of
Hexagon-I is less than or equal to 5 x (1 + 1/1)?, where [ is
a natural number. Thus, the performance ratio of Hexagon-
Lis between 5 x (1 +1/00)” = 5and 5 x (1+1/1)* = 20.
Therefore, the approximation ratio of algorithm Hexagon-I is
(5+¢€), where 0 < € < 15.

3.4. A Fast Approximation Algorithm. Theorem 1 shows that
it is sufficient to cover the unit disk D with five hexagon disks
in the worst case. Since there are six hexagons surrounding
the hexagon which contains the center of unit disk D, it needs
some computation to decide which hexagon disks can be used
to cover the unit disk D. However, if we relax the constraint of
having the least covering hexagon disks, we can always cover
the unit disk D with at most seven hexagon disks (i.e., disks
A0 to A6). Thus, we have the following corollary.

Corollary 6. It is sufficient to cover any unit disk D with seven
hexagon disks which surround disk D.
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Algorithm Hexagon-II
Input: A set P of n points, and a two-dimensional region R.
Output: A set of disks with radius r that covers P.
Step I:
Virtually tessellate the region R with hexagons of length . Calculate and store the coordinate of the center and
the corresponding index of each hexagon in the tessellation. (Each index contains two ranks (x_rank, y_rank)
to x-axis and y-axis, respectively, as shown in Figure 5.)
Step 2:
For each point p with Cartesian coordinate (x, y) in P do
(1) x_rank = l ﬁ J; /1 find the indices of the basic rectangle that contains p

If x_rank is even

SeNEe

else
. y+ (\/3/2) r

(2) Find the hexagon containing p by comparing the distances from p to the centers of hexagons with indices
(x_rank, y_rank), (x_rank + I, y_rank), and [(x_rank + 1, y_rank + 1) if x_rank is even or (x_rank + 1, y_rank — 1)
if x_rank is odd]. Ties are broken in favor of the marked hexagon, otherwise broken arbitrary.
(3) Mark the hexagon chosen in (2).
Step 3:
Output the circumscribed circles of the chosen hexagons.

ALGORITHM 2: A simple linear time approximation algorithm for the MGDC problem.

Inspired by the result of Corollary 6, we design a
7-approximation algorithm, as shown in Algorithm 2, for the
MGDC problem. In the algorithm Hexagon-II, we simply 0,7 27 4,7 6,7
check every point p in P to see in which hexagon the point 1.7 3,7 5.7 7.7
p is located and then mark the hexagon. This algorithm is 0.6 2.6 4.6 6.6
simple yet very efficient. The complexity of this algorithm L6 3.6 5.6 7.6
is O(n + |R|), where n is the number of points in P and |R| 0.5 25 45 6.5
represents the area of the tessellated region R. L5 3.5 5.5 7.5

Before we go into the detail of the 7-approximation algo- v lo.4 24 4.4 6.4
rithm Hexagon-II, let us introduce the technique of locating L4 34 5.4 7.4
a point in the hexagonally tessellated plane in constant time. 0.3 )3 43 6.3

Index each hexagon with length r in the hexagonally L3 5,3 7.3
tessellated plane as in Figure 4. Suppose we divide the plane 0,2 4,2 6,2
by rectangles with width = (3/2)r and length =/3r such that 1.2 3.2 5,2 7.2
rectangles in even column are stacked from the x-axis and 0.1 21 4.1 6,1
rectangles in odd column are stacked from the horizontal L1 3.1 51 7.1
line which is (1/3/2)r above the x-axis; we can index each 0,0 2.0 4.0 6.0
rectangle the same way as we index the hexagons in the 0,00 " 1,0 3,0 5,0 7,0
tessellated plane. x

It is much easier to locate a point in a rectangle than
to locate a point in a hexagon directly. Therefore, in order
to locate a point p in a hexagon of the tessellated plane, we
first locate p in a basic rectangle. As shown in Figure 4, each

Basic rectangle:

L AE

3r/2

basic rectangle contains three regions from three neighboring
hexagons. Once we know the point p is located in some basic
rectangle, we can determine in which hexagon the point p is
located by comparing the distances from p to the centers of
the three neighboring hexagons around the basic rectangle.
The detail of the algorithm is shown in Algorithm 2 and the
analysis of the time complexity is as follows.

FIGURE 4: The hexagonal tessellation plane is indexed and divided
by rectangles.

Because the number of hexagons in the tessellation relies
on the area of the region R, Step 1 of the algorithm Hexagon-
IT requires O(|R|) time to calculate and store the hexagon



centers and their indices. Because there are n points in P and
it takes constant time to locate a point in a basic rectangle
and check which hexagon the point is in, Step 2 requires O(r)
time. The complexity of Step 3 also relies on the number of
hexagons, which is O(|R|). Therefore, the overall complexity
of the algorithm is O(|R|) + O(n) + O(|R|), which is O(n + |R]).
If the area of region R is fixed, then the complexity of the
algorithm is O(n).

4. Simulation Results of the MGDC
Problems and the Applications to the Relay
Node Placement Problems

In this section, we first demonstrate how to derive the
optimal solution to the MGDC problem using binary integer
programming and solve the problem with MATLAB. We then
simulate our proposed algorithms (Hexagon-I and Hexagon-
II) and compare the results with the optimal solutions. The
approximation algorithms of triangle and square tessellation
are also simulated for comparison.

4.1. The Optimal Algorithm to the MGDC Problems Using
Binary Integer Programming. In [18], Wong et al. use binary
integer programming to calculate the optimal gateway place-
ment under the assumption of known node positions and
communication range. In the paper, the possible positions
to place the gateways are found by identifying competi-
tive regions (C Regions). A region here is defined as the
overlapping communication ranges of a set of nodes. Thus
if a gateway is placed in this region, it can communicate
with these nodes in one hop. Therefore, solving the optimal
MGDC problem is reduced to finding the minimum number
of chosen C Regions that can cover all the nodes.

Suppose that # points in P are distributed on an m x m
square region and the radius of the covering disk is r. The
optimal solution to the MGDC problem can be calculated
using the following binary integer programming canonical
form:

Minimize I?X
(3)
Subject to AX > I,,

where I IT is the transpose of a C x 1 identity vector, in which C
is the total number of C Regions, I, is an n x 1 identity vector,
X is a C x 1 binary vector, where each entry denotes whether
the corresponding C Region is chosen as an area to place the
covering disk (1 for yes and 0 for no), and A is an nx C matrix
where an element (7, j) is set to 1 if the distance between point
i and the C Region j is less than or equal to r; otherwise it is
set to 0.

MATLAB binary integer programming function bint-
prog() was used to compute the optimal results.

4.2. Simulation Results. The simulation environment was set
up as follows:

(1) a square region of 200 x 200,
(2) covering disk radius of 10,
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FIGURE 5: Performance comparison of the optimal solutions to
the solutions of the proposed algorithms with triangle tessella-
tion, square tessellation, and hexagon tessellation. (Hexagon-I and
Hexagon-II use the algorithms in Figure 2 with [ = 2 and Figure 3,
resp.).

(3) uniformly distributed points,
(4) number of points ranging from 100 to 500,

(5) each case running 50 tests and using the average of
their values,

(6) using an Acer PC with Intel core-i7 CPU and 4 Gb
memory.

Figure 5 shows the simulation results. As expected, the
hexagon tessellation performs better than the square and
triangle tessellations. More importantly, the numbers of disks
generated by algorithms Hexagon-I (with I = 2) and
Hexagon-II are on average less than 1.7 and 2 times the
optimal solution, respectively, for all the cases from 100 to
500 points. This indicates that the proposed approximation
algorithms for the MGDC problem are practical for general
use.

The execution times of Hexagon-I (with I = 2) and
Hexagon-II are listed in Table 1. As shown in Table 1, the
execution time of algorithm Hexagon-II is much faster than
algorithm Hexagon-I. This is due to the fact that algorithm
Hexagon-II only checks the input points once in the sensing
area, whereas algorithm Hexagon-I needs to examine the
combinations of hexagons in each square-like region.

4.3. Applications to the Relay Node Placement Problems
in WSNs. The proposed approximation algorithms for the
MGDC problem can be applied to the relay node placement
problems in WSNs. The relay nodes are deployed at the
centers of the chosen disks so that each sensor is covered by
one relay node. In general, the relay nodes are responsible
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TaBLE 1: Comparison of the execution time (in seconds) of the two proposed algorithms.

Algorithm/number of points 100 200 300 400 500
Hexagon-I 396.87 3494.42 6314.50 9755.30 12923.42
Hexagon-II 0.37 0.40 0.43 0.45 0.47

TABLE 2: The average number of connected components and additional relay nodes needed for connectivity under various numbers of sensor
nodes in a 200 x 200 monitor region. (r = 10, R = 40).

Number of sensor nodes 50 60 70 80 90 100 200 300 400 500
Number of relay nodes deployed using 4 50 56 63 68 75 14 137 148 155
the Hexagon-II MGDC solution

Average number of connected 49 39 31 19 15 1 1 1 1 1
components of relay nodes

Number of additional relay nodes needed 10 4 1 1 0 0 0 0 0

for connectivity

for aggregating data from their dominating sensors and
then forwarding the aggregated data to the base station by
multihopping. To fulfill this task, the relay nodes themselves
need to be connected. In this study, we assume that the relay
nodes are homogeneous and with the same communication
range R. R is normally much larger than the communication
range r of sensors, and thus we adopt the assumption in [12]
that R > 4r.

To establish the connectivity among relay nodes, we adopt
the same approach taken in [19]. We model the relay nodes
as a graph G = (V, E), in which the vertex set V' consists of
all the relay nodes and, for any u,v € V, there is an edge
(u,v) in E if u is in the communication range of v. Table 2
lists the average number of connected components of 50 tests
for various numbers of relay nodes deployed according to the
solution of our proposed approximation algorithm Hexagon-
II to the MGDC problem in a 200 x 200 monitored region.

As shown in Table 2, the number of components is equal
to 1 while the amount of sensors is greater than 100, which
means that the relay nodes are connected already. Since the
density of sensor nodes in a WSN is normally high, it is
very common that the number of sensors is greater than
100 in a 200 x 200 region. In case there is more than one
connected component in G, we can use the following simple
algorithm to add additional relay nodes to the network. The
time complexity of the algorithm is O(m?), where m is the
number of relay nodes.

Step 1. Find all the connected components in G.

Step 2. Calculate the distances between every two connected
components. The distance of two connected components C,
and C, is defined as the shortest distance between nodes in
C, and nodes in C,.

Step 3. Denote the super graph formed by the connected
components as H. Find a minimum spanning tree T of H.

Step 4. Add m relay nodes equidistantly to the edges in
T whose lengths are greater than R, where m is equal to
[edge length/R] — 1. Thus, the resulting graph is connected.

5. Conclusion and Discussions

This study proposes a linear time approximation algorithm
for the MGDC problem, which can be used to solve the
WHSN relay node placement problems. The number of disks
generated by the proposed algorithm is not more than 5 + ¢
times the optimal solution, where 0 < € < 15. Although
the authors in [13] also provided a (5 + €)-approximation
algorithm for the relay node placement problems, in contrast
to our linear time algorithm, the time complexity of their

2
Ve 4 1), is quite large.

For the case where the locations of relay nodes need
to be determined promptly, the study provides a fast 7-
approximation algorithm for the WSN relay node placement
problem having time complexity O(n + |R|) with very low
constant factor, where 7 is the number of points and |R] is
the area of the deployed region. If the area of the deployed
region is fixed, then the time complexity of the algorithm is
also linear.

Simulation showed that the number of disks generated
by both of the proposed algorithms was on average less
than twice the optimal solution. This allows the proposed
algorithms to be practical for general use.

If we model the WSNs as a graph, the relay node
placement problem in WSNs can be solved by applying the
proposed MGDC approximation algorithms to find the disks
that cover all the sensors and then place the relay nodes
at the centers of the disks. Since the sensors of WSNs are
usually densely deployed, the relay nodes placed by the result
of the proposed algorithms are usually connected. In case
that the relay nodes generated by the proposed algorithm are
not connected, this study provides a simple algorithm that
deploys additional relay nodes to comply with the connection
requirement of relay nodes in a WSN.

In this study, we solve the relay node placement problem
by first solving the MGDC problem and then placing addi-
tional relay nodes, if necessary, to preserve the connection
requirement of the relay nodes. The other approach to
solve the relay node placement problem is to consider the
connection requirement of relay nodes while solving the
MGDC problem. It is highly likely that this approach can

algorithm, O(n
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FIGURE 6: (a) A regular square can be divided into 8 congruent right triangles. (b) The center of the unit disk is located at point O. (c) The
center of the unit disk is located in the area of OBD (green region). (d) The center of the unit disk is located in the area of ODA (red region).

reduce the number of relay nodes needed to cover the sensor
nodes. However, it may increase the time complexity of
solving the MGDC problem.

Appendix

Theorem A.1. Given a square tessellation, six square disks are
sufficient to cover any unit disk D on a plane.

Proof. A circle circumscribing a unit square is called a square
disk. We show that it is sufficient to cover any unit disk & on
a plane with 6 square disks.

Without loss of generality, assume that the center of unit
disk U is located in a regular square A2 in Figure 6. Since a
regular square can be divided into 8 congruent right triangles

(Figure 6(a)), we analyze different cases using one of the
right triangles (e.g., OBA in Figure 6(a)). The analysis of the
remaining triangles is the same.

Let ¢ be the center of unit disk 8. The following cases are
discussed according to the location of C.

Case 1 (¢ is located at point O, where O is the center of square
A2. (Figure 6(b))). The unit disk § can be completely covered
by the circumscribed circle of square A2.

Case 2 (¢ is located in area OBD (the green region in
Figure 6(c))). The arc OD is derived from the unit circle
centered at the intersection point C of A2, A3, A5, and A6.
The unit disk § can be completely covered by 6 circumscribed
circles of squares Al, A2, A3, A4, A5, and A6.
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FIGURE 7: (a) A regular triangle can be divided into 6 congruent right triangles. AOBA is one of the right triangles, where O is the center of
A3. (b) The center of the unit disk is located at point O. (c) The center of the unit disk is located in the area of OBC (green region). (d) The

center of the unit disk is located in the area of OCA (red region).

Case 3 (¢ is located in area ODA (the red region in Fig-
ure 6(d))). The unit disk § can be completely covered by 4
circumscribed circles of squares Al, A2, A4, and A5.

It is trivial to see that Cases 1 to 3 include the whole area of
triangle OBA. Since the most circumscribed circles (i.e., Case
2) required to cover unit disk § are 6, we conclude that it is
sufficient to cover any unit disk on a plane with 6 square disks.
Therefore, suppose the optimal number of unit disks to cover
Pis k. Since each unit disk can be covered by at most 6 square
disks, not more than 6 x k squares disks are required to cover
P. Thus, using the proposed algorithm, the number of output
unit disks is not more than 6 times the optimal number of
unit disks. O

Theorem A.2. Given a triangle tessellation, ten triangle disks
are sufficient to cover any unit disk D on a plane.

Proof. A circle circumscribing a unit triangle is called a
triangle disk. We show that it is sufficient to cover any unit
disk § on a plane with 10 triangle disks.

Without loss of generality, assume that the center of unit
disk & is located in the regular triangle A3 in Figure 7(a).
Since a regular triangle can be divided into 6 congruent right
triangles, we only analyze one of the triangles (e.g., AOBA
in Figure 7(a)). The analysis of the remaining triangles is the
same.

Let ¢ be the center of unit disk 8. The following cases are
discussed according to the location of C.

Case 1 (¢ is located at point O, which is the center of regular
triangle A3 (Figure 7(b))). The unit disk 6 can be completely
covered by the circumscribed circle of triangle A3.
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Case 2 (¢ is located in area OBC (the green region in
Figure 7(c))). The arc OC is derived from the unit circle
centered at the intersection point E of triangles A3, A4, A5,
A8, A9, and Al0. The unit disk § can be completely covered
by 10 circumscribed circles of triangles Al to Al0.

Case 3 (¢ is located in area OCA (the red region in Fig-
ure 7(d))). In this case, the unit disk § can be completely
covered by 6 circumscribed circles of triangles Al, A2, A3,
A6, A7, and AS.

Itis trivial to see that Cases 1 to 3 include the whole area of
triangle OBA. Since the most circumscribed circles (i.e., Case
2) needed to cover unit disk & are 10, we conclude that it is
sufficient to cover any unit disk on the plane with 10 triangle
disks. Therefore, suppose the optimal number of unit disks to
cover P is k. Since each unit disk can be covered by at most 10
triangle disks, not more than 10xk triangles disks are required
to cover P. Thus, with the proposed algorithm, the number
of output unit disks is not more than 10 times the optimal
number of unit disks. O
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